Nox1 transactivation of epidermal growth factor receptor promotes N-cadherin shedding and smooth muscle cell migration.
نویسندگان
چکیده
AIMS In atherosclerosis and restenosis, vascular smooth muscle cells (SMCs) migrate into the subendothelial space and proliferate, contributing to neointimal formation. The goal of this study was to define the signalling pathway by which Nox1 NAPDH oxidase mediates SMC migration. METHODS AND RESULTS SMCs were cultured from thoracic aorta from Nox1(-/y) (Nox1 knockout, KO) and wild-type (WT) mice. In response to thrombin, WT but not Nox1 KO SMCs generated increased levels of reactive oxygen species (ROS). Deficiency of Nox1 prevented thrombin-induced phosphorylation of Src and the subsequent transactivation of the epidermal growth factor receptor (EGFR) at multiple tyrosine residues. Next, activation of extracellular signal-regulated kinase 1/2 (ERK1/2) and matrix metalloproteinase-9 (MMP-9) by thrombin was inhibited by the EGFR inhibitor AG1478 and in Nox1 KO SMCs. Thrombin-induced shedding of N-cadherin from the plasma membrane was dependent on the presence of Nox1 and was blocked by AG1478 and an inhibitor of metalloproteinases. Migration of SMCs to thrombin was impaired in the Nox1 KO SMCs and was restored by expression of Nox1. Finally, treatment of WT SMCs with AG1478 abrogated Nox1-dependent SMC migration. CONCLUSIONS The Nox1 NADPH oxidase signals through EGFR to activate MMP-9 and promote the shedding of N-cadherin, thereby contributing to SMC migration.
منابع مشابه
ADAM17 mediates epidermal growth factor receptor transactivation and vascular smooth muscle cell hypertrophy induced by angiotensin II.
BACKGROUND Angiotensin II (Ang II) promotes growth of vascular smooth muscle cells (VSMCs) via epidermal growth factor (EGF) receptor (EGFR) transactivation mediated through a metalloprotease-dependent shedding of heparin-binding EGF-like growth factor (HB-EGF). However, the identity of the metalloprotease responsible for this process remains unknown. METHODS AND RESULTS To identify the metal...
متن کاملRapid Communication ADAM17 Mediates Epidermal Growth Factor Receptor Transactivation and Vascular Smooth Muscle Cell Hypertrophy Induced by Angiotensin II
Background—Angiotensin II (Ang II) promotes growth of vascular smooth muscle cells (VSMCs) via epidermal growth factor (EGF) receptor (EGFR) transactivation mediated through a metalloprotease-dependent shedding of heparinbinding EGF-like growth factor (HB-EGF). However, the identity of the metalloprotease responsible for this process remains unknown. Methods and Results—To identify the metallop...
متن کاملHeparin-Binding EGF-Like Growth Factor Inhibition of Epidermal Growth Factor (EGF) Receptor Transactivation by Heparin Blockade of Thrombin-Induced Smooth Muscle Cell Migration Involves
Agonists of G protein–coupled receptors, such as thrombin, act in part by transactivating the epidermal growth factor (EGF) receptor (EGFR). Although at first a ligand-independent mechanism for EGFR transactivation was postulated, it has recently been shown that this transactivation by various G protein–coupled receptor agonists can involve heparin-binding EGF-like growth factor (HB-EGF). Becau...
متن کاملHeparin blockade of thrombin-induced smooth muscle cell migration involves inhibition of epidermal growth factor (EGF) receptor transactivation by heparin-binding EGF-like growth factor.
Agonists of G protein-coupled receptors, such as thrombin, act in part by transactivating the epidermal growth factor (EGF) receptor (EGFR). Although at first a ligand-independent mechanism for EGFR transactivation was postulated, it has recently been shown that this transactivation by various G protein-coupled receptor agonists can involve heparin-binding EGF-like growth factor (HB-EGF). Becau...
متن کاملMetalloprotease-dependent ErbB ligand shedding in mediating EGFR transactivation and vascular remodelling.
AngII (angiotensin II) and its G-protein-coupled AT(1) receptor play critical roles in mediating cardiovascular diseases such as hypertension, atherosclerosis and restenosis after vascular injury. It is widely believed that AngII promotes these diseases by inducing vascular remodelling that involves hypertrophy, hyperplasia and migration of VSMCs (vascular smooth muscle cells). We have shown th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cardiovascular research
دوره 93 3 شماره
صفحات -
تاریخ انتشار 2012